Integrable Dynamics of Charges Related to Bilinear Hypergeometric Equation

نویسنده

  • Igor Loutsenko
چکیده

A family of systems related to a linear and bilinear evolution of roots of polynomials in the complex plane is introduced. Restricted to the line, the evolution induces dynamics of the Coulomb charges (or point vortices) in external potentials, while its fixed points correspond to equilibriums of charges in the plane. The construction reveals a direct connection with the theories of the Calogero-Moser systems and Liealgebraic differential operators. A study of the equilibrium configurations amounts in a construction (bilinear hypergeometric equation) for which the classical orthogonal and the Adler-Moser polynomials represent some particular cases. Mathematics Subject Classification: 33C,33E,35Q35,35Q40,35Q51, 35Q53,37J.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELLIPTIC INTEGRABLE SYSTEMS Recurrences for elliptic hypergeometric integrals

In recent work on multivariate elliptic hypergeometric integrals, the author generalized a conjectural integral formula of van Diejen and Spiridonov to a ten parameter integral provably invariant under an action of the Weyl group E7. In the present note, we consider the action of the affine Weyl group, or more precisely, the recurrences satisfied by special cases of the integral. These are of t...

متن کامل

N = 4 Super Kdv Equation

We construct N = 4 supersymmetric KdV equation as a hamiltonian flow on the N = 4 SU(2) super Virasoro algebra. The N = 4 KdV superfield, the hamiltonian and the related Poisson structure are concisely formulated in 1D N = 4 harmonic superspace. The most general hamiltonian is shown to necessarily involve SU(2) breaking parameters which are combined in a traceless rank 2 SU(2) tensor. First non...

متن کامل

Some Recent Results on Integrable Bilinear Equations

This paper shows that several integrable lattices can be transformed into coupled bilinear differential-difference equations by introducing auxiliary variables. By testing the Bäcklund transformations for this type of coupled bilinear equations, a new integrable lattice is found. By using the Bäcklund transformation, soliton solutions are obtained. By the dependent variable transformation, this...

متن کامل

Multi-component generalizations of four integrable differential-difference equations: soliton solutions and bilinear Bäcklund transformations

Bilinear approach is applied to derive integrable multi-component generalizations of the socalled 1+1 dimensional special Toda lattice, the Volterra lattice, a simple differential-difference equation found by Adler, Moser, Weiss, Veselov and Shabat and another integrable lattice reduced from the discrete BKP equation. Their soliton solutions expressed by pfaffians and the corresponding bilinear...

متن کامل

Complexiton solutions to integrable equations

Complexiton solutions (or complexitons for short) are exact solutions newly introduced to integrable equations. Starting with the solution classification for a linear differential equation, the Korteweg-de Vries equation and the Toda lattice equation are considered as examples to exhibit complexiton structures of nonlinear integrable equations. The crucial step in the solution process is to app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002